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Abstract

This report aims to unify several approaches for building stable projection-based
reduced order models (ROMs). Attention is focused on linear time-invariant (LTI)
systems. The model reduction procedure consists of two steps: the computation of a
reduced basis, and the projection of the governing partial differential equations (PDEs)
onto this reduced basis. Two kinds of reduced bases are considered: the proper orthog-
onal decomposition (POD) basis and the balanced truncation basis. The projection
step of the model reduction can be done in two ways: via continuous projection or via
discrete projection. First, an approach for building energy-stable Galerkin ROMs for
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linear hyperbolic or incompletely parabolic systems of PDEs using continuous projec-
tion is proposed. The idea is to apply to the set of PDEs a transformation induced
by the Lyapunov function for the system, and to build the ROM in the transformed
variables. The resulting ROM will be energy-stable for any choice of reduced basis.
It is shown that, for many PDE systems, the desired transformation is induced by
a special weighted L2 inner product, termed the “symmetry inner product”. Atten-
tion is then turned to building energy-stable ROMs via discrete projection. A discrete
counterpart of the continuous symmetry inner product, a weighted L2 inner product
termed the “Lyapunov inner product”, is derived. The weighting matrix that defines
the Lyapunov inner product can be computed in a black-box fashion for a stable LTI
system arising from the discretization of a system of PDEs in space. It is shown that
a ROM constructed via discrete projection using the Lyapunov inner product will be
energy-stable for any choice of reduced basis. Connections between the Lyapunov inner
product and the inner product induced by the balanced truncation algorithm are made.
Comparisons are also made between the symmetry inner product and the Lyapunov
inner product. The performance of ROMs constructed using these inner products is
evaluated on several benchmark test cases.
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1 Introduction

Despite improved algorithms and the availability of massively parallel computing resources,
simulations of the fidelity commonly employed in system modeling for today’s science and
engineering applications are in practice often too computationally expensive for use in a
design or analysis setting. This situation has pushed researchers to develop reduced order
models (ROMs): models constructed from a high-fidelity simulation that retain the essential
physics and dynamics of a high-fidelity model, but have a a much lower computational cost
and can thus be run in real or near-real time for use in applications that require on-the-spot
decision making, optimization, and/or control.

In order to serve as a useful predictive tool, a ROM should possess the following properties:

• Consistency (with respect to its corresponding high-fidelity model).

• Stability.

• Convergence (to the solution of its corresponding high-fidelity model).

The second of these properties, namely numerical stability, is particularly important, as it is a
prerequisite for studying the convergence and the accuracy of the ROM. It is well-known that
the model reduction method known as balanced truncation [36, 18] has a rigorous stability
guarantee. However, the computational cost of this method, which requires the computa-
tion and simultaneous diagonalization of infinite controllability and observability Gramians,
makes balanced truncation computationally intractable for systems of very large dimensions
(i.e., systems with more than 10,000 degrees of freedom [39]). Less costly model reduction
approaches such as the balanced proper orthogonal decomposition (BPOD) method [48, 38],
and the proper orthogonal decomposition (POD) method [42, 37, 24] lack, in general, an
a priori stability guarantee. In [3], Amsallem et al. suggest that POD ROMs constructed
for linear time-invariant (LTI) systems in descriptor form tend to possess better numer-
ical stability properties than POD ROMs constructed for LTI systems in non-descriptor
form. Although heuristics such as these exist, it is in general unknown a priori if a ROM
constructed using POD or BPOD will preserve the stability properties of the high-fidelity
system from which the model was constructed. The stability of a POD or BPOD ROM is
commonly evaluated a posteriori : the ROM is constructed, used to predict some dynamical
behavior, and deemed a success if the solutions generated by the ROM are numerically stable
and accurately reproduce the expected behavior. There is some risk inherent in this sort of
analysis, as the ROM could introduce non-physical instabilities into the approximation.

The importance of obtaining stable ROMs has been recognized in recent years by a number
of authors. In [39], Rowley et al. show that Galerkin projection preserves the stability of an
equilibrium point at the origin if an “energy-based” inner product is employed. In [9, 27, 26],
Barone et al. demonstrate that a symmetry transformation leads to a stable formulation
for a Galerkin ROM for the linearized compressible Euler equations [9, 27] and non-linear
compressible Navier-Stokes equations [26] with solid wall and far-field boundary conditions.
In [41], Serre et al. propose applying the stabilizing projection developed by Barone et al. in
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[9, 27] to a skew-symmetric system constructed by augmenting a given linear system with its
adjoint system. This approach yields a ROM that is stable at finite time even if the energy
of the physical model is growing.

The methods described above derive (a priori) a stability-preserving model reduction frame-
work that is specific to a particular equation set. There exist, in addition to these techniques,
approaches which stabilize an unstable ROM through a post-processing (a posteriori) sta-
bilization step applied to an unstable algebraic ROM system. Ideally, the stabilization
will minimally modify the ROM. In [4], Amsallem et al. propose a method for stabiliz-
ing projection-based linear ROMs through the solution of a small-scale convex optimization
problem. In [12], a set of linear constraints for the left-projection matrix, given the right-
projection matrix, are derived by Bond et al. to yield a projection framework that is guar-
anteed to generate a stable ROM. In [7], a ROM stabilization methodology that achieves
improved accuracy and stability through the use of a new set of basis functions representing
the small, energy-dissipation scales of turbulent flows is derived by Balajewicz et al. In [47],
Zhu et al. derive some large eddy simulation (LES) closure models for POD ROMs for the
incompressible Navier-Stokes equations, and demonstrate numerically that the inclusion of
these LES terms yields a ROM with increased numerical stability (albeit at the sacrifice of
consistency of the ROM with respect to the direct numerical simulation (DNS) from which
the ROM is constructed).

The primary objective of the present work is to unify various approaches that fall into the first
“class” of ROM stabilization approaches described above (those derived to have an a priori
stability guarantee) using the energy method [23] and the concept of “energy-stability”. The
work is motivated by the observation that many of these approaches, e.g., those presented
in [39, 9, 27, 26, 41], have certain similarities. In particular:

• All these methods require a transformation of the governing equations prior to con-
structing the ROM.

• The application of this transformation is equivalent to performing the Galerkin projec-
tion of the model reduction in a special weighted inner product, the so-called “energy
inner product”.

• For linear problems, Galerkin projection in the “energy inner product” is equivalent
to a Petrov-Galerkin projection (a projection in which the test and trial reduced bases
differ) in the L2 inner product.

The observations made above motivate the following questions:

• The energy inner products derived in [39, 9, 27, 26, 41] are specific to the equations
of compressible flow. Is it possible to derive the energy inner product for a general
partial differential equation (PDE)?

• The energy inner products derived in [39, 9, 27, 26, 41] assume the Galerkin projection
step of the model reduction is performed at the level of the continuous PDEs. Is it
possible to compute numerically a discrete form of the energy inner product?
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• What is the connection between balanced trunction [36, 18], a model reduction tech-
nique with a stability guarantee, and ROMs constructed in the aforementioned stability-
preserving energy inner products?

The present work aims to address these questions. To this effect, the remainder of this
report is organized as follows. Projection-based model reduction is overviewed in Section
2. The notions of stability that are employed in this report (energy-stability, time-stability,
Lyapunov stability) are defined in Section 3. Section 4 focuses on the construction of energy-
stable ROMs for linear systems of PDEs using continuous projection. It is shown that a
certain transformation applied to a generic linear hyperbolic or incompletely parabolic set of
PDEs and induced by the Lyapunov function for these equations will yield a Galerkin ROM
that is stable for any choice of reduced basis (in particular, the POD basis). It is then shown
that, for many PDE systems, the desired transformation is induced by a special weighted
L2 inner product, termed the “symmetry inner product”. Examples of this inner product
are given for several systems of physical interest (the wave equation, the linearized shallow
water equations, the linearized compressible Euler equations, and the linearized compressible
Navier-Stokes equations). A discrete counterpart of the continuous symmetry inner product,
a weighted L2 inner product termed the “Lyapunov inner product”, is derived in Section
4. The weighting matrix that defines this inner product can be computed in a black-box
fashion for a stable LTI system arising from the discretization of a linear system of PDEs in
space. The Galerkin projection of the LTI full order system in this inner product gives rise
to a ROM with a stability guarantee, again for any choice of reduced basis. Connections
between the Lyapunov inner product and the inner product induced by balanced truncation
are made. Conclusions are offered in Section 6.
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2 Projection-Based Model Reduction

In this section, several approaches to building projection-based reduced order models are
reviewed. Attention is restricted to linear time-invariant (LTI) systems. A system is called
time-invariant if the output response for a given input does not depend on when that input
is applied [6].

At the continuous level, an LTI system can be represented by a partial differential equation
(PDE) (or system of PDEs) of the form

ẋ(t) = L(x(t)) + Lc(u(t)), y(t) = Lo(x(t)), in Ω. (1)

Here, t denotes time. x ∈ R
n is called the state vector. u ∈ R

p represents the vector of control
variables. y ∈ R

q is the measured signal or output. Ω is an open bounded domain. The ‘·’
symbol denotes diffentiation with respect to time, i.e., ẋ ≡ ∂x

∂t
. The operator L : R

n → R
n

is a smooth linear spatial-differential operator, and Lc : R
p → R

n and Lo : R
n → R

q are
smooth linear mappings.

Suppose the PDE system (1) has been discretized in space using some discretization scheme,
e.g., the finite element method. The result will be a discrete LTI system of the form:

ẋN(t) = AxN (t) + BuP (t), yQN(t) = CxN(t). (2)

Here, xN ∈ R
N is the discretized state vector, uP ∈ R

P is the discretized vector of control
variables, and yQN ∈ R

Q is the discretized output; A ∈ R
N×N , B ∈ R

N×P and C ∈ R
Q×N

are constant matrices (in particular, they are not a function of time t).

The general approach to projection-based model reduction consists of two steps:

Step 1: Calculation of trial and test reduced bases, each of order M , with M “small”.
Step 2: Projection of the governing system ((1) or (2)) onto the test reduced basis.

The result of this procedure is a “small” dynamical system that accurately describes the
dynamics of the full order system for some set of conditions. The two steps comprising the
projection-based ROM procedure are detailed in the following subsections. There are two
approaches for performing step 2 of the model reduction: continuous and discrete projection,
described in Section 2.1. There exist a number of approaches for calculating the reduced
basis modes (step 1 of the model reduction), e.g., POD [42, 37, 24], balanced POD [48, 38],
balanced truncation [36, 18], goal-oriented bases [13], generalized eigenmodes [8], Koopman
modes [40]. Attention is restricted here to two kinds of reduced bases: POD and balanced
truncation (Section 2.2).
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2.1 Projection

Model Reduction via Continuous Projection

In the continuous projection approach [9, 27], the continuous system of PDEs (1) is projected
onto a continuous test reduced basis {ψi}

M
i=1 ∈ R

n in a continuous inner product, denoted
generically (for now) by (·, ·). For example, (·, ·) could denote the usual L2 inner product,
i.e.,

(

x(1),x(2)
)

=

∫

Ω

x(1)T x(2)dΩ. (3)

First, the solution to (1) is approximated as

x(t) ≈

M
∑

i=1

xM,i(t)φi, (4)

where xM,i(t) are the unknown ROM coefficients or modal amplitudes, to be determined in
solving the ROM. The reduced trial basis functions φi (as well as the reduced test basis
functions ψi) are a function of space but not time.

Substituting (4) into (1), the following is obtained

M
∑

i=1

ẋM,i(t)φi = L

(

M
∑

i=1

xM,i(t)φi

)

+ Lc(u), yQM(t) = Lo

(

M
∑

i=1

xM,i(t)φi

)

, (5)

where yQM(t) is the reduced approximation of the output.

Next, a test reduced basis {ψi}
M
i=1 ∈ R

n is introduced, and the system of PDEs (5) is
projected onto the test reduced basis modes ψj for j = 1, 2, ..., M in the inner product (·, ·)
to yield

M
∑

i=1

ẋM,i(t) (ψj,φi) =

(

ψj,L

(

M
∑

i=1

xM,i(t)φi

))

+(ψj,Lc(u)) , yQM(t) = Lo

(

M
∑

i=1

xM,i(t)φi

)

,

(6)
for j = 1, 2, ..., M . Typically, the trial and test reduced bases φi and ψi are chosen to be
orthonormal in the inner product (·, ·), so that (ψj,φi) = δij , where δij denotes the Krönecker
delta function. Invoking this property, as well as the linearity property of the operators L
and Lo, (6) simplifies to

ẋM,j(t) =

M
∑

i=1

xM,i(t) (ψj,L(φi)) + (ψj,Lc(u)) , yQM(t) =

M
∑

i=1

xM,i(t)Lo(φi), (7)

for j = 1, 2, ..., M . (7) is a set of M time-dependent ordinary differential equations (ODEs)
for the modal amplitudes xM,i(t) in (4).

In the case that the test and trial reduced basis vectors differ, the projection (6) is referred
to as a Petrov-Galerkin projection. Otherwise, if ψi = φi for i = 1, 2, ..., M , the projection
(6) is referred to as a Galerkin projection.
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Model Reduction via Discrete Projection

In the discrete projection approach, the PDE system discretized in space (2) is projected
onto a discrete test reduced basis in a discrete inner product. Suppose this discrete inner
product is the following weighted L2 inner product:

(

x
(1)
N ,x

(2)
N

)

P
= x

(1)T
N Px

(2)
N , (8)

where P ∈ R
N×N is a symmetric positive-definite matrix. Let ΦM ∈ R

N×M and ΨM ∈ R
N×M

denote the trial and test reduced bases for (2), respectively. Assume these matrices have full
column rank, and are orthonormal in the inner product (8), so that ΨT

MPΦM = IM , where
IM denotes the M ×M identity matrix. The first step in constructing a ROM for (2) using
discrete projection is to approximate

xN(t) ≈ ΦMxM(t), (9)

where xM(t) ∈ R
M is the ROM solution (to be determined). As in the continuous projection

approach, the reduced bases ΦM and ΨM are not a function of time. Substituting (9) into
(2), and projecting this system onto the test reduced basis, the following is obtained:

ẋM(t) = ΨT
MPAΦMxM(t) + ΨT

MPBuP (t), yQM(t) = CΦMxM(t), (10)

where yQM is a reduced approximation of the output. (11) is an M × M LTI system of the
form

ẋM(t) = AMxM(t) + BMuP (t), yQM(t) = CMxM(t), (11)

where
AM = ΨT

MPAΦM , BM = ΨT
MPB, CM = CΦM . (12)

Again, in the case that ΨM 6= ΦM , the projection (11) is referred to as a Petrov-Galerkin
projection. Otherwise, if ΨM = ΦM , the projection (11) is referred to as a Galerkin projec-
tion.

Continuous vs. Discrete Projection

In the majority of applications of reduced order modeling, the discrete projection approach is
employed in constructing the ROM. This discrete approach has the advantage that boundary
condition terms present in the discretized equation set are often (depending on the imple-
mentation) inherited by the ROM. Certain properties of the numerical scheme used to solve
the full equations may be inherited by the ROM as well. The discrete approach is black-box,
at least for linear systems (2): it operates on the matrices A, B and C, so that access to the
high-fidelity code that was used to generate these matrices and/or access to the governing
equations is not required. In contrast, the continuous projection approach is tied to the
governing PDEs – the continuous problem (1) needs to be translated to the discrete setting,
e.g., by interpolating the reduced basis modes and evaluating the continuous inner products
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in (7) using a numerical quadrature (Section 4.5). Although the continuous approach is not
black-box, as it requires access to the governing PDEs, its similarity to spectral numeri-
cal approximation methods allows the use of analysis techniques employed by the spectral
methods community [17, 27].

Note that, regardless of which projection approach is used to build the ROM, the ROM
dynamical system will have the form (11), as (7) has this form when written as a matrix
problem. The solution to the ROM is obtained by advancing (7) forward in time using a
time-integration scheme. Since the system considered here is linear, the projection terms
in (7) are not time-dependent. Hence, these terms can be pre-computed and stored in the
offline stage of the model reduction – in particular, they need not be re-computed at each
time step of the online time-integration stage of the ROM.

2.2 Reduced Bases

Attention is now turned to the computation of the reduced bases employed in the ROM.
Two approaches for computing reduced bases are summarized herein: the proper orthogonal
decomposition (POD) and balanced truncation.

Proper Orthogonal Decomposition (POD)

The proper orthogonal decomposition, or POD, is a widely used approach for computing
efficient bases for dynamical systems. Discussed in detail in Lumley [34] and Holmes et al.
[24], POD is a mathematical procedure that, given an ensemble of data and an inner product,
denoted generically by (·, ·), constructs a basis for that ensemble that is optimal in the sense
that it describes more energy (on average) of the ensemble in the chosen inner product
than any other linear basis of the same dimension M . The ensemble {xk : k = 1, . . . , K}
is typically a set of K instantaneous snapshots of a numerical solution field, taken for K
values of a parameter of interest, or at K different times. Mathematically, POD seeks an
M-dimensional (M << K) subspace spanned by the set {φi} such that the projection of the
difference between the ensemble xk and its projection onto the reduced subspace is minimized
on average. It is a well-known result [9, 24, 30, 35] that the solution to the POD optimization
problem reduces to the eigenvalue problem

Rφ = λφ, (13)

where

R ≡ 〈xk ⊗ xk〉, (14)

is a self-adjoint and positive semi-definite operator. If it is assumed that R is compact, then
there exists a countable set of non-negative eigenvalues λi with associated eigenfunctions φi.
It can be shown [24, 34] that the set of M eigenfunctions, or POD modes, {φi : i = 1, . . . , M}
corresponding to the M largest eigenvalues of R is precisely the desired basis.
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In practice, the POD basis is typically obtained through a singular value decomposition
(SVD) of the snapshot matrix rather than by solving the eigenvalue problem (13). The
POD procedure is summarized in Algorithm 1 below.

Algorithm 1 Proper Orthogonal Decomposition (POD)

Step 1: Collect K snapshots of the solution vector {xk}K
k=1 ∈ R

N . Place these snapshots
into the columns of a matrix X defined by

X =
(

x1 . . .xK
)

∈ R
N×K . (15)

Step 2: Select an inner product to build the reduced basis in, e.g., the inner product (8).
Step 3: Compute the SVD of the matrix

1

K
XTPX = UΣUT . (16)

Step 4: Let
ΦM =

(

φ1, · · · , φM

)

= XU(:, 1 : M) (17)

be the POD reduced basis of size M .
Step 5: Orthonormalize the POD basis computed in Step 4:

φi =
φi

φT
i Pφi

. (18)

for i = 1 to M .

The following error formula can be shown for the POD [24, 30]:

1

M

M
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

xi −

M
∑

j=1

(

xi,φj

)

P
φj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

P

=

N
∑

k=M+1

λk, (19)

where λ1 ≥ ... ≥ λN > 0 are the positive eigenvalues of the operator R (14).

Typically, the size of the reduced basis is chosen based on an energy criterion. That is, M
is selected to be the minimum integer such that

EPOD(M) ≥ tol (20)

where 0 ≤ tol ≤ 1 represents the snapshot energy represented by the POD basis, and

EPOD(M) ≡

∑M
i=1 λi

∑N
i=1 λi

. (21)

Balanced Truncation

Another approach for constructing reduced bases in building projection-based ROMs is bal-
anced truncation, first introduced by Moore [36]. The balanced truncation algorithm assumes
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a semi-discrete full order model of the form (2). The linear system (2) is first transformed
into a balanced form that isolates observable and reachable (or controllable) modes. This
is achieved by simultaneously diagonalizing the reachability (or controllability) and observ-
ability Gramians, defined below.

Definition 2.4.1 (Chapter 30 of [11]): The reachability (or controllability) Gramian

P ≡

∫

∞

0

eAtBBT eAT tdt (22)

is the unique symmetric (at least) positive semi-definite solution of the Lyapunov equation

AP + PAT + BBT = 0. (23)

Definition 2.4.2 (Chapter 30 of [11]): The observability Gramian

Q ≡

∫

∞

0

eAT tCTCeAtdt (24)

is the unique symmetric (at least) positive semi-definite solution of the Lyapunov equation

ATQ + QA + CTC = 0. (25)

The following lemmas state some important properties of the reachability and observability
Gramians.

Lemma 2.4.3 (Chapter 6 of [28]): Assume that (A,B) is reachable (controllable). Then
the Lyapunov equation (23) has a positive definite solution P if and only if A is stable (i.e.,
does not have any eigenvalues with a positive real part).

Lemma 2.4.4 (Chapter 6 of [28]): Assume that (A,C) is observable. Then the Lyapunov
equation (25) has a positive definite solution Q if and only if A is stable (i.e., does not have
any eigenvalues with a positive real part).

In the present work, it will be assumed the matrix A defining the full order system (2) is
stable, i.e., it has no eigenvalues with a positive real part. It will also be assumed (A,C)
is observable and (A,B) is reachable (controllable). For a discussion of balanced truncation
applied to unstable systems for which the conditions of Lemmas 2.4.3 and 2.4.4 do not hold,
the reader is referred to [10]. The balanced truncation algorithm is summarized in Algorithm
2 below1.

1By Lemmas 2.4.3 and 2.4.4, the P and Q matrices (solutions to (26) and (27) respectively) exist. More-
over, these matrices are both symmetric and at least positive semi-definite. Hence the Cholesky factorization
(28) exists. Note that in Algorithm 2 and all subsequent analysis of this algorithm, it has been assumed
that A, B and C are real matrices. In the case these matrices are complex, the transpose operation T in
Algorithm 2 (and all subsequent analysis of this algorithm) should be replaced with a Hermitian transpose
H .
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Algorithm 2 Model Reduction via Balanced Truncation

Step 1: Solve for the reachability Gramian P by solving the Lyapunov equation:

AP + PAT + BBT = 0. (26)

Step 2: Solve for the observability Gramian Q by solving the Lyapunov equation:

ATQ + QA + CTC = 0. (27)

Step 3: Compute the Cholesky factorization of P:

P = UUT . (28)

Step 4: Compute the eigenvalue decomposition of UTQU:

UT QU = KΣ2KT . (29)

Step 5: Compute the balancing transformation matrices:

Tbal = Σ1/2KTU−1, T−1
bal = UKΣ−1/2, (30)

where the entries of Σ are in decreasing order.
Step 6: Apply the change of variables x̃N (t) = TbalxN(t) to the full-order LTI system (2)
to yield:

˙̃xN (t) = TbalAT−1
balx̃N(t) + TbalBuP (t),

yQN(t) = CT−1
balx̃N (t).

(31)

Step 7: Partition Ã ≡ TbalAT−1
bal, B̃ ≡ TbalB, C̃ ≡ CT−1

bal as follows:

Ã =

(

Ã11 Ã12

Ã21 Ã22

)

, B̃ =

(

B̃1

B̃2

)

, C̃ =
(

C̃1 C̃2

)

, (32)

where the blocks with subscript 1 correspond to the most observable and reachable states,
and blocks with subscript 2 correspond to the least observable and reachable states.
Step 8: Return the ROM system for a ROM of size M , given by:

ẋM(t) = AMxM(t) + BMuP (t),
yQM(t) = CMxM(t),

(33)

where AM = Ã11, BM = B̃1, CM = C̃1. The left and right reduced bases are given
respectively by:

ΨM = TT
bal(:, 1 : M), ΦM = Sbal(:, 1 : M), (34)

where Sbal ≡ T−1
bal.
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In practice, the transformation matrices (30) are typically computed as:

Tbal = VTZT , T−1
bal = UW, (35)

where Z is the Cholesky factor of the observability Gramian

Q = ZZT , (36)

and W is the left singular vector of UTZ, that is,

UTZ = WΣVT . (37)

This is due to numerical stability issues that could arise in compuing Σ−1/2 in (30).

In effect, balanced truncation is a method for computing the test and trial bases ΨM and
ΦM in (11). Given the test and trial bases defined in (34), the ROM system matrices (33)
can be computed from the formulas (12).

The reader can verify that the reachability and observability Gramians satisfy the following
property:

TbalPTT
bal = T−T

bal QT−1
bal = Σ = diag{σ1, . . . , σN}. (38)

The entries of the diagonal matrix Σ are known as the Hankel singular values of the system
(2). Assuming a ROM of size M has been constructed using balanced truncation (Algorithm
2 above), the following error bound on the output can be shown [48]:

||yQN(t) − yQM(t)||2 ≤ 2

N
∑

i=M+1

σi||uP (t)||2. (39)

As with POD, the size of the reduced basis used in model reduction via balanced truncation
is typically determined from an energy criterion. That is, M is selected to be the minimum
integer such that

EBT (M) ≥ tol (40)

where 0 ≤ tol ≤ 1 represents the snapshot energy represented by the balanced truncation
basis, and

EBT (M) ≡

∑M
i=1 σi

∑N
i=1 σi

. (41)

POD vs. Balanced Truncation

Physically, POD modes maximize the average energy in the projection of the snapshot data
onto the subspace spanned by these modes. Although POD modes can be very effective
at approximating a given dataset, they may not describe all the dynamics in a particular
dataset. In particular, these modes in general do not contain low-energy features of the
dataset, features which may be critically important to the system dynamics [38]. Adding
more POD modes to the reduced basis (increasing M) may actually decrease the accuracy
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of the ROM [39]. Moreover, POD ROMs usually lack robustness with respect to parameter
changes: it is in general unknown how well a POD ROM will predict the dynamics of a
system with parameters different than those in the snapshot set used to generate the POD
basis. Similarly, it is unknown how well the ROM will predict the system dynamics at times
beyond the final snapshot collection time [4]. A final limitation of POD Galerkin ROMs is
that they lack in general a stability guarantee. That is, a POD ROM (11) constructed for a
stable LTI system (2) may produce solutions that are unbounded as t → ∞ [43, 9, 13, 27].

Generally, balanced truncation is viewed as the “gold standard” in model reduction. Al-
though it is not optimal in the sense that there may be other ROMs with smaller error norms,
the approach has a priori error bounds that are close to the lowest bounds achievable by
any reduced order model [38]. Unfortunately, balanced truncation becomes computationally
intractable for systems of very large dimension (e.g., of size N ≥ 10, 000), and hence is not
practical for many systems of physical interest [39]. This is due to the high computational
cost of solving the Lyapunov equations (26) and (27) for the reachability and observabil-
ity Gramians (O(N3) operations). The storage requirements of balanced truncation can be
prohibitive as well. Even efficient iterative schemes developed for large sparse Lyapunov
equations compute the solution to (26) and (27) in dense form, and hence require O(N2)
storage [19]. Unlike POD, balanced truncation delivers ROMs that preserve stability of a
stable system (2) [36], however.
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3 Stability Definitions

As stated in the Introduction, the objective of this work is to present and unify some model
reduction techniques that have a stability guarantee. Before beginning this task, some general
definitions of stability are reviewed.

3.1 Energy-Stability

The definition of stability considered in the present work is known as “energy-stability”
[23, 21, 39]. The concept of energy-stability originated in the literature involving the nu-
merical analysis of spectral discretizations to time-dependent PDEs [23, 21]. It has also
appeared in the Galerkin finite element method literature, e.g., [20, 32], where the energy
method was employed to derive stable Galerkin methods for hyperbolic conservation laws. It
is well-known that physical systems admit a certain energy structure. The basic idea behind
building energy-stable ROMs is that a ROM constructed for such systems should preserve
this energy structure. Among the authors who have explored the concept of energy-stability
in the context of model reduction are Rowley et al. [38] and Kwasniok [31]. In [38], Rowley
et al. introduced a family of “energy-based” inner products for the purpose of constructing
stable Galerkin ROMs for fluid problems. In [31], Kwasniok recognized the role of energy
conservation in ROMs of nonlinear, incompressible fluid flow for atmospheric modeling appli-
cations, and proposed a Galerkin projection approach in which the ROM conserve turbulent
kinetic energy or turbulent enstrophy.

Consider, without loss of generality, the following scalar initial value problem, known as a
Cauchy problem:

∂u
∂t

= Lu, x ∈ R
n, t ≥ 0

u(x, 0) = f(x).
(42)

Here, L denotes a linear differential operator with constant coefficients. The operator L is
said to be semi-bounded with respect to an inner product (·, ·) if it satisfies the following
inequality for all sufficiently smooth functions w(x) ∈ L2:

(w,Lw) ≤ α(w, w), (43)

where α ∈ R. The following theorem (quoted from [29]) states the conditions under which
the Cauchy problem (42) is well-posed.

Theorem 3.1.1 [29]: The Cauchy problem (42) is well-posed if and only if the operator L is
semi-bounded with respect to an inner product (·, ·) which corresponds to a norm equivalent
to the L2 norm.

Consider now a Galerkin approximation to (42), denoted here by uN , and satisfying

(

∂uN

∂t
, φ

)

= (LuN , φ), (44)
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for all φ sufficiently smooth, and suppose L is semi-bounded with respect to (·, ·). Setting
φ = uN in (44) leads to the following energy estimate for the Galerkin approximation:

dEN

dt
≤ 2αEN , (45)

where

EN ≡
1

2
||uN ||

2 (46)

denotes the energy of the Galerkin approximation uN , and || · || is the norm induced by the
inner product (·, ·). Applying Gronwall’s lemma to (49) gives the inequality

||uN(x, t)|| ≤ e
1

2
αt||uN(x, 0)||. (47)

The result (47) says that the energy of the numerical solution to (44) is bounded in a way that
is consistent with the behavior of the energy of the exact solution to the original differential
equation (42), i.e., it is energy-stable.

This definition can be extended to a ROM LTI system of the form (11).

Definition 3.1.2 (Energy-Stability [21]): A ROM LTI system (11) is called energy-stable if

EM(t) ≤ eαtEM(0), (48)

for some constant α ∈ R, where

EM ≡
1

2
||xM ||2 (49)

is the system energy of the ROM numerical solution xM to (11), and ||·|| is a norm equivalent
to the L2 norm.

In general, a ROM LTI system (11) is not guaranteed to satisfy Definition 3.1.2 even if the
PDE system (1) is well-posed and the full order LTI system arising from the discretization
of these PDEs in space (2) is stable. However, it is often possible to ensure (48) holds for
the ROM LTI system through a careful selection of the trial and test bases ΦM and ΨM

and/or the inner product in which the projection step of the model reduction is performed
(Sections 4 and 5).

3.2 Time-Stability

Having defined energy-stability, some discussion of how this concept relates to other common
definitions of stability is in order. A common definition of stability is “time-stability”. A
numerical solution is said to be time-stable if it remains bounded as t → ∞. The following
is a more precise definition of time-stability.

Definition 3.2.1 (Time-Stability [21]): A ROM LTI system (11) is called time-stable if the
numerical energy of the ROM solution is non-increasing in time for an arbitrary time step,
i.e., if

dEN

dt
≤ 0. (50)
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It is straightforward to demonstrate that a scheme that is time-stable is energy-stable. Sup-
pose an LTI ROM (11) is time-stable, so (50) holds. Applying Gronwall’s lemma to this
inequality, EN (t) ≤ EN(0). Thus, (48) holds with α = 0.

In general, the converse of the above statement does not hold: energy-stability does not
necessarily imply time-stability. This is to be expected. The practical implication of a ROM
possessing the energy-stability property is that its numerical solution is bounded in a way
that is consistent with the behavior of the exact solutions of the governing equations (1). It
is possible that these governing PDEs support instabilities. In this case, an energy-stable
ROM may possess physical unbounded solutions as t → ∞, as (it can be argued) it should,
if these unbounded solutions are physical.

3.3 Lyapunov Stability

The concept of energy-stability may be related to another concept of stability, namely Lya-
punov stability.

Consider a system:
ẋ = f(x), x ∈ R

n, (51)

where f ∈ R
n is a given function, subject to some initial condition x(0) = x0. Suppose x = 0

be an equilibrium point of (51). The following theorem, known as the Lyapunov stability
theorem [6] characterizes the stability of this point.

Theorem 3.3.1 (Lyapunov Stability Theorem): Let V be a non-negative function on R
n and

let V̇ represent the time derivative of V along trajectories of the system dynamics (51). Let
Br = Br(0) be a ball of radius r around the origin. If there exists an r > 0 such that V is
positive definite and V̇ is negative semi-definite for all x ∈ Br, then x = 0 is locally stable
in the sense of Lyapunov.

The function V defined in Theorem 3.3.1 above is known as the Lyapunov function for the
system (51). Observe that the numerical energy EN defined in (49) satisfies the definition of
a Lyapunov function (Theorem 3.3.1) if (50) holds. Thus, if an LTI ROM (2) is energy-stable
with α = 0 (Definition 3.1.2), then the ROM is stable in the sense of Lyapunov.

A corollary of Theorem 3.3.1 is the following.

Corollary 3.3.2 [16]: An LTI system (2) is stable in the sense of Lyapunov if and only if all
the eigenvalues of A have real parts less than or equal to 0, and those with real parts equal
to 0 are non-repeated.

Corollary 3.3.2 is commonly used to check numerically (a posteriori) the stability of an LTI
system (2) or a ROM (11) constructed for an LTI system.
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4 Stable Model Reduction for LTI Systems via

Continuous Projection

In some recent journal articles by the authors [9, 27], a method for constructing energy-stable
ROMs for linearized compressible inviscid flow using POD and the continuous projection
method was proposed. In this section, the approach is generalized to PDE systems of the
form:

q̇ + Aiq,i − Kijq,ij + Cq = F. (52)

In (52), q ∈ R
n denotes a vector of unknowns, F ∈ R

n is a source term, Ai, Kij and C are
n × n matrices, where 1 ≤ i, j ≤ d, with d denoting the number of spatial dimensions. The
matrices Ai, Kij and C could be a function of space, but they are assumed to be steady (not
a function of time t). The notation ,i denotes differentiation in space with respect to the ith

spatial direction, i.e., q,i ≡
∂q

∂xi
, and the so-called Eisenstein notation (implied summation

on repeated indices) has been employed. Most conservation laws, as well as many PDEs
of physical interest, can be written in the form (52). If Kij = 0 ∀i, j, (52) is known as a
hyperbolic system [22]. An example of a system of this form is the linearized compressible
Euler system. Otherwise, if Kij 6= 0, (52) is known as an incompletely parabolic system [22].
A canonical example of such a system is the linearized compressible Navier-Stokes system.

In Section 4.1, a change of variables for the system (52) is derived such that the L2 inner
product is the energy inner product for the system in these new variables. It is then shown
that an energy-based inner product, referred to as the “symmetry inner product” in [9, 27],
induces the desired transformation (Section 4.2). It is also shown that a Galerkin projection
of (52) in the symmetry inner product may be viewed as a Petrov-Galerkin projection of
the original equations in the L2 inner product. An approach for deriving the stabilizing
transformation using Lyapunov functions representing the total energy of the system (52) is
outlined in Section 4.3. Examples of the symmetry inner product for several PDEs that can
be written as (52) are given in Section 4.4. A stability-preserving discrete implementation of
the projection of (52) in the symmetry inner product is outlined in Section 4.5. The stability
properties of a POD ROM constructed using the continuous projection approach and the
symmetry inner product are studied on a numerical example in Section 4.6.

4.1 A Stabilizing Transformation

Suppose there exists a transformation

T : R
n → R

n,
q → v,

(53)

such that in the new variables v, the system (52) has the form

v̇ + AS
i v,i − KS

ijv,ij + CSv = FS, (54)

where:

22



• Property 1: The matrices AS
i are symmetric for all 1 ≤ i ≤ d.

• Property 2: The matrices KS
ij are symmetric for all 1 ≤ i, j ≤ d.

• Property 3: The augmented viscosity matrix:

KS ≡





KS
11 KS

12 KS
13

KS
21 KS

22 KS
23

KS
31 KS

32 KS
33



 (55)

is positive semi-definite.

Theorem 4.1.1: Suppose a ROM for (54) is constructed using continuous Galerkin projection
in the L2(Ω) inner product. Suppose the matrices in (54) satisfy Properties 1–3 above.
Assume also that the reduced basis modes satisfy the boundary conditions of the full order
system, or they are implemented weakly in the ROM in a stability-preserving way2. Let vM

denote the ROM solution to (54). Then the ROM is energy-stable with energy estimate

||vM(·, T )||2 ≤ e
1

2
βT ||vM(·, 0)||2, (56)

where β is an upper bound on the eigenvalues of the matrix

B ≡
∂AS

i

∂xi
+

∂KS
ij

∂xi∂xj
− 2CS. (57)

Moreover, this energy-stability result holds for any choice of reduced basis.

Proof. To prove energy-stability of (54), it is necessary to bound the energy of the ROM
solution to (54) with FS = 0. First, note that:

KS
ij

∂2vM

∂xi∂xj
= ∂

∂xi

(

KS
ij

∂vM

∂xj

)

−
(

∂KS
ij

∂xi

∂vM

∂xj

)

. (58)

Now:
dEM

dt
= 1

2
d
dt
||vM ||22

= 1
2

d
dt

(vM ,vM)
=
(

vM , ∂vM

∂t

)

=
(

vM ,−AS
i

∂vM

∂xi
+ KS

ij
∂2vM

∂xi∂xj
− CSvM

)

= −
∫

Ω
vT

MAS
i

∂v
∂xi

∂Ω +
∫

Ω
vT

MKS
ij

∂2vM

∂xi∂xj
∂Ω −

∫

Ω
vT

MCSvM∂Ω.

(59)

Each of the terms in (59) will be bounded separately. First,

−
∫

Ω
vT

MAS
i

∂vM

∂xi
∂Ω = −1

2

∫

Ω
∂

∂xi

(

vT
MAS

i vM

)

dΩ + 1
2

∫

Ω
vT

M
∂AS

i

∂xi
vdΩ

= −1
2

∫

∂Ω
vT

MAS
i nivMdS + 1

2

∫

Ω
vT

M
∂AS

i

∂xi
vMdΩ.

(60)

2The reader is referred to [27] for a discussion of stability-preserving weak implementations of boundary
conditions for ROMs constructed using the continuous projection approach. In general, a weak implemen-
tation of boundary conditions will be stability-preserving provided the boundary conditions are well-posed.
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In (60),the property that each of the matrices AS
i is symmetric has been employed (Property

1).

Next,
∫

Ω
vT

MKS
ij

∂2vM

∂xi∂xj
∂Ω =

∫

Ω
vT

M
∂

∂xi

(

KS
ij

∂vM

∂xj

)

dΩ −
∫

Ω
vT

M

∂KS
ij

∂xi

∂vM

∂xj
∂Ω. (61)

Again, each of the two terms in (61) will be bounded separately.

∫

Ω
vT

M
∂

∂xi

(

KS
ij

∂vM

∂xj

)

dΩ = −
∫

Ω
∂vM

∂xi

T
KS

ij
∂vM

∂xj
+
∫

∂Ω
vT

MKS
ij

∂vM

∂xj
nidS

≤
∫

∂Ω
vT

MKS
ij

∂vM

∂xj
nidS,

(62)

provided the matrix (66) is positive semi-definite (Property 3).

Now for the second term in (61):

−
∫

Ω
vT

M

∂KS
ij

∂xi

∂vM

∂xj
∂Ω = −1

2

∫

Ω
∂

∂xj

(

vT
M

∂KS
ij

∂xi
vM

)

dΩ + 1
2

∫

Ω
vT

M

∂KS
ij

∂xi∂xj
vMdΩ

= −1
2

∫

∂Ω
vT

M

∂KS
ij

∂xi
njvMdS + 1

2

∫

Ω
vT

M

∂KS
ij

∂xi∂xj
vMdΩ.

(63)

In (63), the property that the KS
ij matrices and therefore their derivatives are symmetric has

been employed (Property 2).

Finally, (60) and (61) are substituted into (59). The boundary integral terms may be ne-
glected if the reduced basis modes satisfy the boundary conditions or the boundary conditions
have been implemented in a stability-preserving way. The following bound is obtained:

1
2

d
dt
||vM ||22 ≤ 1

2

∫

Ω
vT

M

(

∂AS
i

∂xi

)

vMdΩ + 1
2

∫

Ω
vT

M

∂KS
ij

∂xi∂xj
vMdΩ −

∫

Ω
vT

MCSvM∂Ω

= 1
2

∫

Ω
vT

MBvMdΩ,
(64)

where B is given by (69). Applying Gronwall’s inequality to (64), it is found that:

||vM(·, T )||2 ≤ e
1

2
βT ||vM(·, 0)||2, (65)

where β is an upper bound on the eigenvalues of the matrix B (69).

�

Note that, if C = 0 in (52) and the Ai and Kij matrices are spatially-constant, it follows
that β = 0 in (64). In this case, if the ROM for (52) is constructed in the variables v,
the ROM will be time-stable as well as stable in the sense of Lyapunov, in addition to
being energy-stable. For linearized conservation laws (e.g., the linearized shallow water
equations, the linearized compressible Euler equations, the linearized compressible Navier-
Stokes equations), the property that C = 0 and the Ai and Kij are spatially-constant will
in general hold if the base flow is spatially uniform.

24



4.2 Stability-Preserving “Symmetry Inner Product” and Petrov-
Galerkin Connection

A key property of systems of the form (52) is that they are symmetrizable [23, 9, 27]; that
is, it is possible to derive a symmetric positive-definite matrix H such that:

• Property 1∗: The matrices HAi are symmetric for all 1 ≤ i ≤ d.

• Property 2∗: The matrices HKij are symmetric for all 1 ≤ i, j ≤ d.

• Property 3∗: The augmented viscosity matrix:

KH ≡





HK11 HK12 HK13

HK21 HK22 HK23

HK31 HK32 HK33



 (66)

is positive semi-definite.

Since H is symmetric positive-definite, the following defines a valid inner product:

(

q(1),q(2)
)

(H,Ω)
≡

∫

Ω

q(1)T Hq(2)dΩ. (67)

Following the terminology introduced in [9, 27], the inner product (67) will be referred to as
the “symmetry inner product”. It is straightforward to see that the following corollary to
Theorem 4.1.1 holds.

Corollary 4.2.1: Suppose a ROM for (52) is constructed using continuous Galerkin projection
in the symmetry inner product (67). Assume Properties 1∗-3∗ hold. Assume also, as in
Theorem 4.1.1, that the reduced basis modes satisfy the boundary conditions of the full
order system, or they are implemented weakly in the ROM in a stability-preserving way. Let
qM denote the ROM solution to (52). Then the ROM is energy-stable with energy estimate

||qM(·, T )||(H,Ω) ≤ e
1

2
βT ||qM(·, 0)||(H,Ω), (68)

where β is an upper bound on the eigenvalues of the matrix

B ≡
∂(HAi)

∂xi
+

∂(HKij)

∂xi∂xj
− 2HC. (69)

Moreover, this energy-stability result holds for any choice of reduced basis.

Proof. Analogous to the proof of Theorem 4.1.1.

�

Again, in the case that C = 0 and the Ai and Kij matrices are spatially-constant, it will
follow from Corollary 4.2.1 that a ROM constructed in the symmetry inner product (67) will
be time-stable and stable in the sense of Lyapunov, in addition to being energy-stable.
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It is interesting to observe that a Galerkin projection of the governing (52) in the symmetry
inner product (67) is equivalent to a Petrov-Galerkin projection. Let φi for i = 1, ..., M
denote the trial reduced basis vector for the solution q. Performing a Galerkin projection of
the equations (52) onto the modes φi gives

∫

Ω

φT
i H (q̇ + Aiq,i + Kijq,ij + Cq) dΩ =

∫

Ω

φT
i HFdΩ, (70)

for i = 1, ..., M . (70) is equivalent to a Petrov-Galerkin projection of the equations (52) in
the regular L2 inner product

∫

Ω

ψT
i (q̇ + Aiq,i + Kijq,ij + Cq) dΩ =

∫

Ω

ψT
i FdΩ, (71)

where the test reduced basis functions are given by ψi = Hφi, for all i = 1, ..., M .

4.3 Lyapunov Function Connection

The stabilizing transformation described in Section 4.1 can be found using Lyapunov function
theory. By the Lyapunov Stability Theorem (Theorem 3.3.1), if an equilibrium point of a
system is stable, there exists a non-negative function that is always decreasing along the
system trajectories – the Lyapunov function V = V (q) [6]. In the case the governing system
conserves energy or is dissipative, the total energy of the system is a Lyapunov function
V (q) for the system [6, 38]. Hence, a transformation is sought such that

ET = V (q) = ||v||2E, (72)

where ET denotes the total energy of the system, and || · ||E is some norm equivalent to the
L2 norm (commonly referred to as the “energy norm” [38, 9, 27]). Consider, for example,
the compressible Euler equations in two dimensions (2D):

∂ρ
∂t

+ u ∂ρ
∂x

+ v ∂ρ
∂y

+ ρ
(

∂u
∂x

+ ∂v
∂y

)

= 0,

ρ
(

∂u
∂t

+ u∂u
∂x

+ v ∂v
∂y

)

+ ∂p
∂x

= 0,

ρ
(

∂v
∂t

+ u ∂v
∂x

+ v ∂v
∂y

)

+ ∂p
∂y

= 0,

ρ
(

∂e
∂t

+ u ∂e
∂x

+ v ∂e
∂y

)

+ ρe
(

∂u
∂x

+ ∂v
∂y

)

+ ∂(up)
∂x

+ ∂(vp)
∂y

= 0,

(73)

in some open bounded domain Ω ∈ R
2. Here, ρ denotes the fluid density, u and v are the

fluid velocities, e is the internal energy per unit mass of the fluid, and γ is the ratio of specific
heats. The total energy of the fluid system (73) is given by

ET =

∫

Ω

{

ρe +
1

2
ρ(u2 + v2)

}

dΩ (74)
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Now, define the following transformation from the variables q to the variables v:

q ≡









ρ
u
v
e









→









a
u
v
c









≡ v, (75)

where
a2 ≡ ρ, c2 ≡ γ(γ − 1)e, (76)

as well as the following inner product:

(

v(1),v(2)
)

E
≡

∫

Ω

(

1

γ(γ − 1)
a(1)c(1)a(2)c(2) +

1

2
a(1)a(2)

[

u(1)u(2) + v(1)v(2)
]

)

dΩ. (77)

The norm induced by the inner product (77) is:

||v||2E ≡ (v,v)E

=
∫

Ω

(

1
γ(γ−1)

a2c2 + 1
2
a2 [u2 + v2]

)

dΩ

=
∫

Ω

(

ρe + 1
2
ρ[u2 + v2]

)

dΩ
= ET .

(78)

ET is a Lyapunov function for the system (73), satisfying the conditions given in Theorem
3.3.1. In particular, dEt

dt
≤ 0. Hence, if a ROM for (73) is constructed in the v variables

using the inner product (77), this ROM will be time-stable, energy-stable and stable in the
sense of Lyapunov.

It was shown in Section 4.2 that the symmetry inner product (67) is the energy inner product
for a linear system of PDEs of the form (52).

4.4 Examples

Example 1: Wave Equation

Consider the one-dimensional (1D) wave equation:

ü = a2u,xx (79)

where a ∈ R denotes the wave speed, and ü ≡ ∂2u
∂t2

. (79) is a canonical PDE of the hyperbolic
type. Remark that (79) can be written as a first order system

q̇ = Aq,x, (80)

where

q =

(

u̇
u,x

)

, A =

(

0 a2

1 0

)

. (81)
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By Corollary 4.2.1, a matrix that symmetrizes A is sought. Remark that if

H =

(

1 0
0 a2

)

, (82)

the matrix HA is symmetric [44]. It follows that to ensure energy-stability, a ROM for (79)
should be constructed by projecting the system (80) onto the reduced basis modes in the
symmetry inner product (67) with H given by (82).

Example 2: Linearized Shallow Water Equations

Consider the linearized form of the shallow water equations:

q̇′ + Aiq
′

,i + Cq′ = 0. (83)

These equations are obtained from the full (non-linear) shallow water equations by decom-
posing the fluid vector q(x, t) into a steady mean plus an unsteady fluctuation, i.e.,

q(x, t) + q̄(x) + q′(x, t) (84)

and linearizing the full shallow water equations around the steady mean state q̄. If qT =
(

u, v, w, φ
)

, then the convective flux matrices in the hyperbolic system (83) in three-
dimensions (3D) are given by:

A1 =









ū 0 0 1
0 ū 0 0
0 0 ū 0
φ̄ 0 0 ū









, A2 =









v̄ 0 0 0
0 v̄ 0 1
0 0 v̄ 0
0 φ̄ 0 v̄









, A3 =









w̄ 0 0 0
0 w̄ 0 0
0 0 w̄ 1
0 0 φ̄ w̄









, (85)

where φ denotes the local height of the fluid above the equilibrium depth, and u, v, and w
are the components of the fluid velocity vector [44]. Remark that each of the convective flux
matrices (85) can be symmetrized by the matrix

H =









φ̄ 0 0 0
0 φ̄ 0 0
0 0 φ̄ 0
0 0 0 1









. (86)

From Corollary 4.2.1, the equations (83) should be projected onto the reduced basis modes
in the symmetry inner product (67) with H given by (86) to guarantee an energy-stable
ROM.

Example 3: Linearized Compressible Euler Equations

Consider the linearized compressible Euler equations. These equations may be used if a
compressible fluid system can be described by inviscid, small-amplitude perturbations about
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a steady-state mean flow. The equations are obtained from the full (non-linear) compressible
Euler equations by decomposing the fluid vector q(x, t) into a steady mean plus an unsteady
fluctuation (84) and linearizing these equations around the steady mean state q̄. If qT =
(

u, v, w, ζ, p
)

, where u, v and w are the three components of the velocity vector, ζ
is the specific volume (the reciprocal of the density), and p is the pressure, the linearized
compressible Euler equations take the form (83). In 3D, the convective flux matrices Ai in
the linearized compressilbe Euler hyperbolic system (83) are given by:

A1 =













ū 0 0 0 ζ̄
0 ū 0 0 0
0 0 ū 0 0
−ζ̄ 0 0 ū 0
γp̄ 0 0 0 ū













, A2 =













v̄ 0 0 0 0
0 v̄ 0 0 ζ̄
0 0 v̄ 0 0
0 −ζ̄ 0 v̄ 0
0 γp̄ 0 0 v̄













, A3 =













w̄ 0 0 0 0
0 w̄ 0 0 0
0 0 w̄ 0 ζ̄
0 0 −ζ̄ w̄ 0
0 0 γp̄ 0 w̄













.

(87)
Here, γ = CP /CV is the ratio of specific heats. The reader may verify that if the linearized
compressible Euler system (83) is pre-multiplied by the following symmetric positive definite
matrix:

H =













ρ̄ 0 0 0 0
0 ρ̄ 0 0 0
0 0 ρ̄ 0 0
0 0 0 α2γρ̄2p̄ ρ̄α2

0 0 0 ρ̄α2 (1+α2)
γp̄













, (88)

where α is a real, non-zero parameter to yield the system, the convective flux matrices HAi

are all symmetric [9, 27]. It follows that if a ROM for the linearized compressible Euler
equations is constructed in the symmetry inner product (67) with H given by (88), the
resulting ROM will be energy-stable.

Example 4: Linearized Compressible Navier-Stokes Equations

Consider the linearized compressible Navier-Stokes equations. These equations are appropri-
ate when a compressible fluid system can be described by viscous, small-amplitude pertur-
bations about a steady-state base flow. As with the linearized shallow water equations and
linearized compressible Euler equations, to derive these equations from the full (non-linear)
compressible Navier-Stokes equations, the fluid vector q(x, t) is written as the sum of a
steady mean plus an unsteady fluctuation (84), and a linearization around the steady mean
is performed. If the viscous work terms are neglected from the equations3 (appropriate, for
example, in a low Mach number regime), the result is a linear incompletely parabolic system
of the form (52). If qT =

(

u, v, w, T, ρ
)

, where T and ρ denote the fluid temperature

3A survey of the literature reveals that the viscous work terms are invariably neglected from the linearized
compressible Navier-Stokes equations by authors studying energy-stability of these equations [23, 2]. The
omission of these terms is justified only in the low Mach number regime, or in the case that the base flow
is uniform. The extension of the symmetrization approach presented here to the linearized compressible
Navier-Stokes equations in which the viscous work terms are retained is the subject of present research.
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and density respectively, the convective and viscous flux matrices that appear in (52) are
given by:

A1 =













ū ρ̄ 0 R RT̄
ρ̄

0 ū 0 0 0
0 0 ū 0 0

T̄ (γ − 1) 0 0 ū 0
ρ̄ 0 0 0 ū













, A2 =













v̄ 0 0 0 0

0 v̄ 0 R RT̄
ρ̄

0 0 v̄ 0 0
0 T̄ (γ − 1) 0 v̄ 0
0 ρ̄ 0 0 v̄













, (89)

A3 =













w̄ 0 0 0 0
0 w̄ 0 0 0

0 0 w̄ R RT̄
ρ̄

0 0 T̄ (γ − 1) w̄ 0
0 0 0 ρ̄ w̄













, K11 =
1

ρ̄Re













2µ + λ 0 0 0 0
0 µ 0 0 0
0 0 µ 0 0
0 0 0 γκ

Pr
0

0 0 0 0 0













, (90)

K12 ≡
1

2ρ̄Re













0 λ + µ 0 0 0
µ + λ 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













, K13 ≡
1

2ρ̄Re













0 0 λ + µ 0 0
0 0 0 0 0

µ + λ 0 0 0 0
0 0 0 0 0
0 0 0 0 0













,

(91)

K21 ≡
1

2ρ̄Re













0 µ + λ 0 0 0
λ + µ 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













, K22 ≡
1

ρ̄Re













µ 0 0 0 0
0 2µ + λ 0 0 0
0 0 µ 0 0
0 0 0 γκ

Pr
0

0 0 0 0 0













,

(92)

K23 ≡
1

2ρ̄Re













0 0 0 0 0
0 0 λ + µ 0 0
0 µ + λ 0 0 0
0 0 0 0 0
0 0 0 0 0













, K31 ≡
1

2ρ̄Re













0 0 µ + λ 0 0
0 0 0 0 0

λ + µ 0 0 0 0
0 0 0 0 0
0 0 0 0 0













(93)

K32 ≡
1

2ρ̄Re













0 0 0 0 0
0 0 µ + λ 0 0
0 λ + µ 0 0 0
0 0 0 0 0
0 0 0 0 0













, K33 ≡
1

ρ̄Re













µ 0 0 0 0
0 µ 0 0 0
0 0 2µ + λ 0 0
0 0 0 γκ

Pr
0

0 0 0 0 0













.

(94)
Here µ and λ are the so-called Lamé constants, Re is the Reynolds number, Pr is the Prandtl
number, R is the universal gas constant, and γ is the ratio of specific heats. The reader can
verify that if the system (52) is pre-multiplied by the symmetric positive definite matrix
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given by

H ≡















ρ̄ 0 0 0 0
0 ρ̄ 0 0 0
0 0 ρ 0 0

0 0 0 ρ̄R
T̄ (γ−1)

0

0 0 0 0 RT̄
ρ̄















, (95)

the “symmetrized” convective flux matrices HAi and diffusive flux matrices HKij satisfy
Properties 1∗–3∗ in Section 4.2. It follows that if a ROM for the linearized compressible
Navier-Stokes equations (52) is constructed in the symmetry inner product (67) with H
given by (95), the resulting ROM will be energy-stable.

Note that the symmetry transformations in the examples above are not unique. For example,
in [2], Abarbanel et al. exhibit a transformation of the form (54) for the linearized compress-
ible Navier-Stokes equations written in the primitive variables qT =

(

ρ, u, v, w, p
)

.

4.5 Stability-Preserving Discrete Implementation

The stability analysis of the preceding subsections has assumed that the integrals resulting
from the projection of the governing equations onto the reduced basis modes are evaluated
exactly in continuous form. At first glance, it appears there may be a problem translating
this continuous result to the discrete setting. This apparent difficulty is reminiscent of
a similar problem that appears in spectral methods, where spectral projections need to be
computed exactly. The problem is resolved in a similar way as in the spectral method context,
namely through the use of high-precision numerical quadrature. First, the snapshots and the
POD basis modes are cast as a collection of continuous finite elements. It is then possible
to construct a numerical quadrature operator that computes exactly all continuous inner
products arising from the continuous Galerkin projection of the equations onto the POD
modes.

More specifically, suppose the domain Ω is broken up into nel finite elements Ωe such that
∪nel

e=1Ωe = Ω. Suppose each of these elements have nn nodes. Then, the finite element
representation of the vector q in (52) in each element Ωe is:

qh
e =

nn
∑

i=1

Ni(x)q(x), x ∈ Ωe. (96)

For examples 1–4 above, it is necessary to compute numerically integrals of the form:

(

q(1),q(2)
)

(H,Ω)
=

∫

Ω

q(1)T Hq(2)dΩ. (97)

Suppose, without loss of generality, that the finite element shape functions are chosen to be
bilinear, so nn = 4. The discrete representations of the vectors q(1) and q(2) are denoted
by qh(1) and qh(2), respectively. The length of these vectors is equal to the number of mesh
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nodes N times the dimension of the vector, r. Let Hh
e be the r × r element inner product

matrix, taken to be piecewise constant over each element. Then, the formula for numerical
integration of (97) can be written as

(

q(1),q(2)
)

(H,Ω)
= qh(1)T Wqh(2), (98)

where W is a sparse block matrix comprised of N ×N blocks of dimension r×r. The (k, l)th

block of this matrix given by wklI, where

wkl =

nel
kl
∑

e=1

Hh
e

4
∑

j=1

Nke
(xje

)Nle(xje
)ωje

. (99)

Here, the outer sum is over the elements connected to the k − l nodal “edge”; the ωje
are

the integration weights and the xje
are the integration points. The sparsity structure of a

representative W matrix (98) for a problem with four degrees of freedom per node (such as
Example 2 in 3D, or Examples 3-4 in 2D) is shown in Figure 1.

0 5000 10000 15000
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8000

10000

12000

14000

16000

nz = 252028

Figure 1. Sparsity structure of representative W matrix
(98)

The introduction of C0 finite elements, namely bilinears, requires a relaxation of the smooth-
ness requirements on q, H, Ai, and Kij. The projection integrals are then to be interpreted
in the sense of distributions. Higher order finite element representations of the POD modes
and snapshots are possible. If these are to be employed, the order of the quadrature rule
must be increased to ensure that no error is introduced into the numerical computation of
the relevant inner products.

4.6 Numerical Experiment

The test case considered here is that of a 2D inviscid acoustic pressure pulse in the following
2D prismatic domain: Ω = (−1, 1)×(−1, 1) ∈ R

2. The governing equations are the linearized
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compressible Euler equations (Example 3 in Section 4.4). For this problem, the base flow is
uniform, with the following values:

p̄ = 101, 325 Pa
T̄ = 300 K

ρ̄ = p̄
RT

= 1.17 kg/m3

ū1 = ū2 = 0.0 m/s
c̄ = 348.0 m/s.

(100)

In (100), c̄ ≡
√

γRT̄ is the mean speed of sound. The problem is initialized with a pressure
pulse in the middle of the domain:

p′(x; 0) = 141.9e−10(x2+y2),

ρ′(x; 0) = p′(x;0)
RT̄

,
T ′(x; 0) = 0,

u′

1(x; 0) = u′

2(x; 0) = 0.

(101)

In terms of the mean values, the amplitude of the initial pressure pulse (101) is 0.001ρ̄c̄2.
As both the high-fidelity code as well as the ROM code are 3D codes, a 2D mesh of the
domain Ω is converted to a 3D mesh by extruding the 2D mesh in the z-direction by one
element. The computational grid for this test case is composed of 3362 nodes, cast into 9600
tetrahedral finite elements within the ROM code. A no-penetration (slip wall) boundary
condition is imposed on the four sides of the domain in the x and y plane. To ensure the
solution has no dynamics in the z-direction, the following values of the z-velocity component
are specified: ū3 = 0, u′

3(x; 0) = 0. Symmetry boundary conditions are imposed for the z =
constant boundaries in the high-fidelity code. The high-fidelity CFD simulation from which
the ROM is generated is performed until time T = 0.01 seconds. During this simulation,
the initial pressure pulse (101) reflected from the walls of the domain a number of times.
Snapshots from this simulation were saved every 5 × 10−5 seconds, to yield a total of 200
snapshots. These snapshots were employed to construct a 20 mode POD basis. Two different
procedures were used to generate a fluid ROM for this problem: the POD/Galerkin method
with the symmetry inner product (67) with H given by (88), and the POD/Galerkin method
with the classical L2 inner product. Using both the symmetry and the L2 inner product, the
POD modes captured essentially 100% of the snapshot energy. Since the base flow for this
example is uniform (100), C = 0 and Ai and Kij are spatially-constant in (52), meaning an
energy-stable ROM is expected to be time-stable and stable in the sense of Lyapunov.

Figure 2 shows a time history of the first two ROM modal amplitudes (circles) compared to
the projection of the full CFD simulation onto the first two POD modes (solid lines) for the
symmetry (a) and L2 (b) ROMs. Mathematically, this figure compares as a function of time
t:

xM,i(t) vs. (q′

CFD,φi)(H,Ω) , i = 1, 2, (102)

where q′

CFD is the high-fidelity CFD solution from which the ROMs were constructed. The
reader may observe agreement between the symmetry ROM and the full simulation (Figure
2(a)) for the time interval considered. In contrast, agreement between the L2 ROM and the

33



full simulation is reasonable only until approximately t = 0.005 seconds (Figure 2(b)). The
oscillations in the L2 ROM modal amplitudes observed for t > 0.008 seconds suggest the
presence of an instability in the L2 ROM. If the modal amplitudes xM,i(t) are plotted up to
a longer time horizon (Figure 3), the instability in the L2 ROM is apparent.
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Figure 2. Time history of modal amplitudes for inviscid
pressure pulse problem
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Figure 3. Time history of modal amplitudes for inviscid
pressure pulse problem for longer time horizon

Figures 4–6 compare the CFD pressure field (a) with the field reconstructed from the sym-
metry (b) and L2 (c) ROM solutions at times t = 4.5 × 10−4, 2.95 × 10−3 and 7.95 × 10−3

seconds. At time t = 4.5 × 10−4 seconds, both the symmetry and L2 ROM solutions are in
good agreement with the high-fidelity solution (Figure 4). At the later times, t = 2.95×10−3

and 7.95× 10−3 seconds, there is a good qualitative agreement between the high-fidelity so-
lution and the symmetry ROM solution (Figures 5–6(a), (b)). The same cannot be said of
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the L2 ROM solution at these later times, however. It is apparent from Figure 6(c) that the
L2 ROM solution has blown up by t = 7.95 × 10−3 seconds, which confirms the instability
of the 20 mode L2 ROM suggested in Figure 2.
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Figure 4. Pressure field at time t = 4.5 × 10−4 seconds
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Figure 5. Pressure field at time t = 2.95 × 10−3 seconds

36



−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
High Fidelity p Solution − Snapshot #160

x

y

(a) CFD

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Pressure p Solution  − 20 Mode Symmetry ROM

x

y

(b) 20 mode symmetry ROM

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Pressore p Solution − 20 Mode L2 ROM

x

y

(c) 20 mode L2 ROM

Figure 6. Pressure field at time t = 7.95 × 10−3 seconds
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5 Stable Model Reduction for LTI Systems via

Discrete Projection

In Section 4, a method for constructing energy-stable ROMs via continuous projection of
a linear system of PDEs was presented. This formulation raises the following question: is
it possible to extend the approach developed in Section 4 to ROMs constructed using the
discrete projection approach outlined in Section 2.1?

It turns out that the answer to this question is yes. In Section 5.1, a discrete counterpart of
the continuous symmetry inner product (Section 4.2), termed the “Lyapunov inner product”
is derived. It is shown that if a ROM for the LTI system (2) is constructed in the Lyapunov
inner product, the ROM will be time-stable and therefore stable in the sense of Lyapunov
as well as energy-stable. Unlike the equation-specific symmetry inner product described
in Section (4.2), the Lyapunov inner product can be computed numerically in a black-box
fashion by solving a Lyapunov equation. Section 5.2 demonstrates that the balanced trun-
cation approach to model reduction may be viewed as a Galerkin projection in a particular
Lyapunov inner product. This inner product is derived from the balanced truncation algo-
rithm (Algorithm 2) and energy-stability of balanced truncation is proven using the energy
method. The performance of the two approaches in addition to the classical Galerkin/POD
method is evaluated on two benchmark test cases in Section 5.3.

An a posteriori literature review reveals that the Lyapunov inner product has been studied
by several authors. Among the first presentations of this inner product (to the authors’
knowledge) appeared in [39] by Rowley et al. The inner product was mentioned in some
recent works by Amsallem et al. [3] and Serre et al. [41]. To the authors’ knowledge,
a numerical study of the properties and performance of POD ROMs constructed in the
Lyapunov inner product is lacking in the literature at the present time.

5.1 Stability-Preserving Lyapunov Inner Product

Suppose the LTI system (2) is stable in the sense of Lyapunov, i.e., all eigenvalues of the
matrix A have non-positive real parts (Corollary 3.4.2). Since A is stable, there exists a
Lyapunov function for

ẋN(t) = AxN(t) (103)

(Theorem 3.4). In particular,

V (xN ) = xT
NPxN , (104)

is a Lyapunov function for (103), where P is the solution of the following Lyapunov equation:

ATP + PA = −Q. (105)

Here, Q is some positive-definite matrix [6]. A positive definite solution P to (105) exists
provided A is stable. Moreover, if Q is symmetric, P is symmetric as well. Given A and
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Q, a solution to the Lyapunov equation (105) can be obtained, for instance, using the lyap

function in the MATLAB control toolbox [45]:

P = lyap(A’, Q, [], speye(N, N)).

Assume the system (103) is stable and a positive-definite symmetric P has been computed
from (105). Since P is symmetric positive-definite, the following

(

x
(1)
N ,x

(2)
N

)

P
≡ x

(1)T
N Px

(2)
N , (106)

defines an inner product. By the discussion of Section 4.3, (106), the energy inner product
induced by the Lyapunov function for (103), is the energy inner product for this system. Let
ΦM be a reduced basis of size M , so that

xN(t) ≈ ΦMxM(t), (107)

where xM(t) denotes the ROM solution.

Theorem 5.1.1: Assume the linear full order system (103) is stable. Suppose a ROM for
(103) is constructed via a Galerkin projection in the (·, ·)P inner product (106), to yield the
following reduced linear system:

ẋM = ΦT
MPAΦMxM , (108)

where it has been assumed that the basis ΦM has been constructed to be orthonormal in
the (·, ·)P inner product, i.e., ΦT

MPΦM = IM where IM denotes the M × M identity ma-
trix. Then, the ROM (108) is energy-stable, time-stable and stable in the sense of Lyapunov.

Proof. It is shown that the energy EM ≡ 1
2
||xM ||22 of the ROM system (108) is non-

increasing:
dEM

dt
= 1

2
d
dt

(xM ,xM)2

= xT
M ẋM

= xT
MΦT

MPAΦMxM

= xT
MΦT

M

(

1
2
PA + 1

2
PTA

)

ΦMxM

= xT
MΦT

M

(

1
2
PA + 1

2
ATP

)

ΦMxM

= −1
2
xT

MΦT
MQΦMxM

< 0,

(109)

since Q > 0. It follows that (108) is time-stable, stable in the sense of Lyapunov and
energy-stable (Section 3).

�

The Lyapunov inner product (106) is the discrete counterpart of the continuous symmetry
inner product (67). This inner product can be employed to construct stable Galerkin ROMs
for (2) using discrete projection. An interesting question that arises is whether the matrix P
defining the Lyapunov inner product (106) is related in some way to the matrix W (98) that
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arises when performing a continuous projection in the symmetry inner product. In general,
the answer is no. In particular, W is by construction a sparse matrix (Figure 1), whereas
P may be dense even if A is sparse. This is clear from Figures 7 (a) and (b), which show
(respectively) the sparsity pattern of a sample A matrix4, and its corresponding P matrix.

0 20 40 60 80

0

10

20

30

40

50

60

70

80

nz = 382

(a) A

0 20 40 60 80

0

10

20

30

40

50

60

70

80

nz = 7056

(b) P

Figure 7. Sparsity structure of representative P matrix for
a given sparse A matrix

As observed earlier for the symmetry inner product, it is clear from (108) that the Galerkin
projection of the system (103) in the Lyapunov inner product (106) can be viewed as a
Petrov-Galerkin projection of this system in the regular L2 inner product, with the test
reduced basis given by ΨM = PΦM , where ΦM is the trial reduced basis.

5.2 Lyapunov Inner Product Associated with Balanced Trunca-
tion

In comparing the steps of the balanced truncation algorithm (Algorithm 2) with the discus-
sion in Section 5.1, the reader may observe some similarities. In particular, both algorithms
require the solution of a Lyapunov equation for a Gramian used to transform and reduce
the system. Here, this connection is investigated further. In particular, it is shown that the
balanced truncation algorithm (Algorithm 2) may be viewed as a projection algorithm in a
special Lyapunov inner product.

Substituting (30) into (34), the following expressions for the left and right bases are obtained:

ΨT
M = Tbal(1 : M, :) = Σ1/2(1 : M, :)KTU−1, (110)

ΦM = Sbal(:, 1 : M) = UKΣ−1/2(:, 1 : M). (111)

4The A matrix whose sparsity pattern is shown in Figure 7 is the “pde example” in the SLICOT model
reduction benchmark repository [15]. For a physical description of this problem, the reader is referred to
[14].
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Remark that (110) and (111) satisfy the following identity:

Σ−1(1 : M, 1 : M)ΨT
MP = Σ−1(1 : M, 1 : M)Σ1/2(1 : M, :)KTU−1UUT

= Σ−1/2(1 : M, :)KTUT

= [UKΣ−1/2(1 : M, :)]T

= ΦT
M ,

(112)

where P is the reachability Gramian (28). It follows that the ROM system matrices in (33)
are:

AM = ΨT
MAΦ = ΨT

MAPTΨMΣ−1(1 : M, 1 : M), (113)

BM = ΨT
MB, (114)

CM = CΦ = CPTΨMΣ−1(1 : M, 1 : M). (115)

The system (33) becomes:

ẋM(t) = ΨT
MAPTΨMΣ−1(1 : M, 1 : M)xM (t) + ΨT

MBuP (t),
yQM(t) = CPTΨMΣ−1(1 : M, 1 : M)xM (t).

(116)

One further transformation is required to exhibit the inner product associated with the
balanced truncation algorithm. Define:

zM(t) ≡ Σ−1/2(1 : M, 1 : M)xM (t). (117)

With this transformation, (116) becomes:

żM(t) = Ψ̂T
MAPTΨ̂MzM(t) + Ψ̂T

MBuP (t),

yQM(t) = CPTΨ̂MzM(t),
(118)

where
Ψ̂M ≡ ΨMΣ−1/2. (119)

Using the symmetry property of the reachability Gramian (P = PT ), (118) is equivalent to

żM(t) = Ψ̂T
MAPΨ̂MzM(t) + Ψ̂T

MBuP (t)

yQM(t) = CPΨ̂MzM(t).
(120)

It is clear that (120) defines a projection of the original LTI system (2) in an L2 inner product
weighted by the reachability Gramian matrix P. This matrix defines a true inner product in
the case when P is symmetric positive-definite, which will hold, by Lemma 2.3.4, if (A,B)
is reachable (controllable).

A property of balanced truncation is that, when applied to stable systems, balanced trun-
cation preserves stability [18] (Section 2.2). This result can be proven using the energy
method.

Theorem 5.2.1: Assume the linear full order system (2) is stable. Suppose a ROM for (2)
is constructed via balanced truncation to yield the reduced system (120). Then, the ROM
(120) is energy-stable, time-stable and stable in the sense of Lyapunov.
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Proof. It is shown that the energy EM ≡ 1
2
||zM ||22 of the homogeneous version of the ROM

system (120) is non-increasing:

dEM

dt
= 1

2
d
dt

(zM , zM)2
2

= zT
M żM

= zT
MΨ̂T

MAPΨ̂MzM

= zT
MΨ̂T

M

(

1
2
AP + 1

2
APT

)

Ψ̂MzM

= zT
MΨ̂T

M

(

1
2
AP + 1

2
PAT

)

Ψ̂MzM

= −1
2
zT

MBBTzM

≤ 0,

(121)

since the eigenvalue of BBT are the singular values of B which are by definition ≥ 0. It
follows that a ROM constructed using balanced truncation is energy-stable, time-stable and
stable in the sense of Lyapunov (Section 3).

�

5.3 Numerical Experiments

International Space Station (ISS)

The first numerical example considered here involves a structural model of component 1r
(Russian service module) of the International Space Station (ISS) [5]. The model consists
of an LTI system of the form (2) with N = 270 and P = Q = 3. In the numerical test
performed here, only the first input and first output is considered, so P = Q = 1. The
matrices A, B and C defining (2) are downloaded from the ROM benchmark repository
[15]. It is verified that the system is stable: the maximum real part of the eigenvalues of A
is −0.0031.

To generate the snapshots from which POD bases are constructed, the full order model (2) is
solved using a backward Euler time integration scheme with an initial condition of xN(0) = 0
and uP (t) = (1×104)δt=0. That is, at time t = 0, an impulse of magnitude 1×104 is applied.
A total of K = 2000 snapshots are collected, every dtsnap = 5 × 10−5 seconds, until time
t = 0.1 seconds. These snapshots are used to construct POD bases of sizes M = 5, 10, 20, 30,
and 40. For each M , a POD basis is constructed using the L2 inner product, as well as the
Lyapunov inner product (106). The matrix P defining the inner product (106) is obtained
using the lyap function in MATLAB’s control toolbox with Q = IN , the N × N identity
matrix (Section 5.1). The POD ROM solutions are compared with solutions obtained by
reducing the system using balanced truncation.

First, the eigenvalues of each ROM matrix AM for each M are computed to determine
stability using Corollary 3.3.2. The maximum real part of the eigenvalues of these ROM
system matrices is plotted in Figure 8 as a function of M . The reader can observe that the
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Figure 8. Maximum real part of eigenvalues of ROM sys-
tem matrix AM for ISS problem

Lyapunov inner product POD ROMs and balanced truncation ROMs are stable for all M
considered – all the eigenvalues of these systems’ matrices are ≤ 0. In contrast, the L2 POD
ROMs are unstable for all M .

Having checked stability, each ROM is run until a specified time Tmax, and the average error
in the output relative to the full order model, i.e.,

Eo
rel =

∑Kmax

i=1 ||yQN(ti) − yQM(ti)||2
∑Kmax

i=1 ||yQN(ti)||2
, (122)

is computed. Here Kmax is the integer such that Tmax = Kmaxdtsnap. The relative errors (122)
in the output for ROMs of different size run up to different values of Tmax are summarized
in Table 1. In the case a ROM went unstable and (122) overflowed, the table contains an
entry of ‘−’.

The objective of the Kmax = 2000 (Tmax = 0.1 seconds) run is to test how well the POD
bases can reproduce the snapshots from which they were constructed, as exactly K = 2000
snapshots (taken up to t = 0.1 seconds) were used to generate these bases. The following
conclusions can be drawn from the results given below:

• Although the L2 POD ROM is unstable for all values of M considered (Figure 8), this
ROM still produces a reasonable ROM for M = 5 and M = 10 (Figure 9(a) and Table
1). The instability manifests itself if a larger basis size is used, however.

• The Lyapunov ROM remains stable and accurate – orders of magnitude more accurate
than the balanced truncation ROM for each M considered (Table 1).

For objective of the Kmax = 5000 (Tmax = 0.25 seconds) and Kmax = 10, 000 (Tmax = 0.5
seconds) runs is to test the predictive capabilities of the POD ROMs relative to the balanced
truncation ROMs for long-time simulations. The ROMs are run for a much longer time
horizon than the run used to generate the POD bases employed in building the ROMs. The
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following observations are noteworthy:

• For Kmax = 5000, The L2 POD ROM manifests an instability for all M considered
except M = 10. For this value of M , the balanced truncation ROM and Lyapunov
POD ROM are more accurate than the L2 POD ROM, however (Figure 9(b) and Table
1).

• For Kmax = 10, 000, the L2 POD ROM is unstable for all M considered. This instability
is apparent in Figure 9(c). Hence, the instability identified in the earlier eigenvalue
analysis (Figure 8) manifests itself if the L2 POD ROM for a long enough time.

• For Kmax = 5000 and Kmax = 10, 000, the Lyapunov POD ROM is more accurate than
the balanced truncation ROM for small M . However, its accuracy is limited, as there
does not appear to be a convergence with M-refinement.

Table 1. Relative Errors (122) Eo
rel in ROM Outputs for

ISS Problem
M

Kmax Method 5 10 20 30 40

2000
BT 9.80 × 10−2 6.39 × 10−2 9.56 × 10−3 2.34 × 10−3 8.34 × 10−4

POD L2 1.09 × 10−4 3.14 × 10−7 − − −
POD Lyapunov P 8.69 × 10−6 4.05 × 10−7 1.13 × 10−6 8.44 × 10−7 9.22 × 10−7

5000
BT 7.64 × 10−2 4.68 × 10−2 8.14 × 10−3 1.87 × 10−3 5.58 × 10−4

POD L2 2.41 4.73 × 10−2 − − −
POD Lyapunov P 2.88 × 10−2 5.24 × 10−3 1.31 × 10−2 1.21 × 10−2 2.86 × 10−2

10,000
BT 6.87 × 10−2 4.47 × 10−2 7.08 × 10−3 1.78 × 10−3 5.76 × 10−4

POD L2 165 3.24 − − −
POD Lyapunov P 5.25 × 10−2 6.46 × 10−2 9.92 × 10−2 1.08 × 10−1 9.92 × 10−2

As a final test, the Lyapunov POD ROM and balanced truncation ROMs with M = 40
modes are run for a very long time, until Tmax = 5 seconds (Kmax = 100, 000). As before,
the ROM bases were constructed from only for the first K = 2000 snapshots (until time
t = 0.1 seconds) of the solution. The output computed by the ROMs is plotted in Figure
9. The L2 POD ROM is not shown as it goes unstable at t ≈ 0.3 seconds. The balanced
truncation ROM agrees very well with the full order solution. Performance of the Lyapunov
POD ROM is reasonable given that the basis employed with this ROM knows nothing about
the solution for t > 0.1 seconds.

Electrostatically Actuated Beam

The second numerical example is that of an electrostatically actuated beam. One application
for this model are microelectromechanical systems (MEMS) devices such as electromechan-
ical radio frequency (RF) filters [33]. Given a simple enough shape, these devices can be
modeled as 1D beams embedded in two or three dimensional space. The beam considered
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(c) Kmax = 10, 000

Figure 9. yQM (t) for M = 10 ROMs (FOM = full order
model) for ISS Problem
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Figure 10. yQM (t) for M = 40 Lyapunov POD and Bal-
anced Truncation ROMs, Kmax = 100, 000 (FOM = full order
model) for ISS Problem
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here is supported on both sides, and has two degrees of freedom: the deflection perpendicu-
lar to the beam (the flexural displacement), and the rotation in the deformation plane (the
flexural rotation). The equations of motion are determined from a Lagrangian formulation.
It is assumed that the beam deflection is small, so that geometric nonlinearities can be ne-
glected. The resulting linear PDEs are discretized using the finite element method following
the approach presented in [46, 33]. The result of this discretization is a second order linear
semi-discrete system of the form:

MẍN + EẋN + KxN = BuP

yQN = CxN ,
(123)

where ẍN ≡ ∂2xN

∂t2
. The input matrix B corresponds to a loading of the middle node of

the domain, and yQN is the flexural displacement at the middle node of the domain. The
damping matrix E is taken to be a linear combination of the mass matrix M and the stiffness
matrix K:

E = cMM + cKK, (124)

with cM = 102 and cK = 10−2. Letting x̃N ≡ ẋN , the second order system (123) can be
written as the following first order system:

(

E M
I 0

)(

ẋN

˙̃xN

)

+

(

K 0
0 −I

)(

xN

x̃N

)

=

(

B
0

)

uP

yQN =
(

C 0
)

(

xN

x̃N

)

,
(125)

or
ż2N = Az2N + B̃uP

yQN = C̃z2N ,
(126)

where zT
2N ≡

(

xN

x̃N

)

and

A ≡

(

0 I
−M−1K −M−1E

)

, B̃ ≡

(

M−1B
0

)

, C̃ ≡
(

C 0
)

. (127)

The matrices M and K in (123) are downloaded from the Oberwolfach model reduction
benchmark collection [1]. These global matrices are then disassembled into their local coun-
terparts, and reassembled to yield a discretization of any desired size. In the full order model
for which results are reported here, N = 5000, so (126) has 10,000 degrees of freedom. It is
verified that the full order system is stable: the maximum real part of the eigenvalues of A
is −0.0016.

To generate the snapshots from which POD bases are constructed, the full order model
(126) is solved using a backward Euler time integration scheme with an initial condition of
z2N(0) = 0 and an input corresponding to a periodic on/off switching, i.e.,

uP =

{

1, 0.005 < t < 0.01, 0.015 < t < 0.02, 0.03 < t < 0.035
0, otherwise

(128)
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A total of Kmax = 1000 snapshots are collected, every dtsnap = 5 × 10−5 seconds, until time
t = 0.05 seconds. From these snapshots, 5, 10, 20 and 30 mode ROMs are constructed
using balanced truncation, POD in the L2 inner product, and POD in the Lyapunov inner
product. In solving the Lyapunov equation (105) for the Lyapunov inner product weighting
matrix P, the matrix Q is taken to be the 2N × 2N identity matrix.

As for the ISS example, the first step is to study the stability of each ROM. Figure 11 shows
the maximum real part of each ROM system matrix AM for each M considered. It is found
that the L2 ROM is unstable for each M , and becomes more unstable with increasing M .
In contrast, the balanced truncation and POD Lyapunov inner product ROMs are stable for
all M considered, as expected.
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Figure 11. Maximum real part of eigenvalues of ROM
system matrix AM for beam problem

Next, the accuracy of each ROM is examined. Table 5.3 summarizes the errors (122) in the
ROM solutions relative to the full order model solution for three runs of different lengths.
An entry of ‘−’ in the table indicates that the error overflowed due to an instability in the
ROM.

The objective of the first run (Kmax = 1000) is to study how well the POD ROMs can
reproduce the snapshots from which they were constructed, and to compare these ROMs’
performance with the performance of ROMs constructed using balanced truncation. The
reader can observe that the POD ROM constructed in the Lyapunov inner product is the
most accurate. The POD L2 ROM is both unstable as well as inaccurate (Figure 12(a)).

The second two runs (Kmax = 2000 and Kmax = 5000) are aimed to study the predictive
capabilities of the ROMs for long-time simulations. The full order model is run until time
2.5 seconds. As before, only snapshots up to time t = 0.05 seconds are used to construct the
POD bases for the ROMs. In addition to the signal (128), the following inputs are applied
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in both the full order model and the ROM:

uP =















0.055 < t < 0.06, 0.065 < t < 0.07, 0.08 < t < 0.085,
0.105 < t < 0.11, 0.115 < t < 0.12, 0.13 < t < 0.135,

1, 0.205 < t < 0.21, 0.215 < t < 0.22, 0.23 < t < 0.235,
0, otherwise.

(129)

The reader may observe by examining Table 5.3 and Figure 12 that the balanced truncation
ROMs are in general the most accurate. The POD ROMs constructed in the Lyapunov
inner product nonetheless produce reasonable results (Figures 12(b)-(c)) and appear to be
converging to the full order model solution with M-refinement (Table 5.3). The POD L2

ROM result is not shown in Figures 12(b)-(c), as the solution produced by this ROM blows
up around time t = 0.02 seconds.

Table 2. Relative Errors (122) Eo
rel in ROM Outputs for

Beam Problem
M

Kmax Method 5 10 20 30

1000
BT 6.29 × 10−2 4.51 × 10−3 6.93 × 10−5 3.60 × 10−6

POD L2 8.56 × 10−1 6.62 − −
POD Lyapunov P 2.05 × 10−3 6.23 × 10−5 2.09 × 10−8 1.35 × 10−8

2000
BT 5.84 × 10−2 4.47 × 10−3 6.29 × 10−5 3.17 × 10−6

POD L2 7.76 4.26 × 103 − −
POD Lyapunov P 3.62 × 10−2 1.12 × 10−2 3.47 × 10−4 4.13 × 10−5

5000
BT 7.36 × 10−2 4.77 × 10−3 5.48 × 10−5 2.77 × 10−6

POD L2 4.40 × 103 − − −
POD Lyapunov P 1.80 × 10−1 1.09 × 10−1 2.03 × 10−2 6.09 × 10−3

Lastly, the level of computational resources required for computing the Lyapunov inner prod-
uct and the the level of computational resources required for performing model reduction via
balanced truncation are compared. Table 3 gives the CPU times for Steps 1-5 of the balanced
truncation algorithm (Algorithm 2) and the CPU times for solving the Lyapunov equation
(105) as a function of 2N , the problem size. All computations are performed in serial using
MATLAB’s linear algebra capabilities and MATLAB’s control toolbox, on a Linux worksta-
tion with 6 Intel Xeon 2.93 GHz CPUs. Although the Lyapunov inner product computation
is costly, as it requires the solution of a Lyapunov equation, it requires 2-3 times less CPU
time than the balanced truncation algorithm. This is because balanced truncation requires
the solution of two Lyapunov equations for the observability and reachability Gramians, as
well as the Cholesky and eigenvalue factorizations of these Gramians.
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Figure 12. yQM (t) for M = 10 ROMs (FOM = full order
model) for Beam Problem

Table 3. CPU Times (in seconds) for Balanced Truncation
vs. Lyapunov Inner Product Computations

2N
Method 1250 2500 5000 10, 000

Lyapunov Inner Product 5.08 × 101 4.60 × 102 4.02 × 103 6.09 × 104

Balanced Truncation 1.09 × 102 1.10 × 103 1.04 × 104 1.24 × 105
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6 Summary and Conclusions

In this report, several approaches for building projection-based ROMs with an a priori
stability guarantee are presented and unified using the notion of energy-stability. For ROMs
constructed using the continuous projection approach, it is shown that a transformation of
a generic PDE system of the hyperbolic or incompletely parabolic type leads to a stable
formulation of the Galerkin ROM for this system. It is then shown that, for many linear
PDE systems, the said transformation is induced by a special weighted L2 inner product,
referred to as the “symmetry inner product”. If the Galerkin projection step of the model
reduction procedure is performed in this inner product, the resulting ROM is guaranteed
to satisfy certain stability bounds regardless of the reduced basis employed. A discrete
counterpart of the symmetry inner product, referred to as the “Lyapunov inner product”,
is derived, and it is demonstrated that a ROM constructed for an LTI system via discrete
projection in this inner product has an a priori stability guarantee, again regardless of the
choice of reduced basis. Connections between the Lyapunov inner product and the inner
product induced by the balanced truncation approach to model reduction are made. The
performance of POD ROMs constructed using the symmetry and Lyapunov inner products
are assessed on several numerical examples for which POD ROMs constructed in the L2

inner product manifest instabilities.

The key properites of the symmetry inner product and Lyapunov inner product are summa-
rized in the table below.

Symmetry Inner Product (67) Lyapunov Inner Product (106)

Continuous Discrete
For linear PDE system of the form For linear ODE system of the form
q̇ + Aiq,i + Kijq,ji = F ẋ = Ax
Defined for unstable systems but

Undefined for unstable systems
time-stability of ROM is not guaranteed
Induced by Lyapunov function Induced by Lyapunov function
for the system for the system
Equation specific Black-box

Derived analytically in closed form
Computed numerically
by solving a Lyapunov equation

Sparse Dense

Both inner products are weighted L2 inner products and have the same origin: they are
induced by the Lyapunov function for the governing system of equations. The symmetry
inner product is a continuous inner product derived for a specific PDE system of the form
(52). Projection in this inner product requires access to the governing PDEs, which gives
rise to a projection algorithm that is embedded. In contrast, the Lyapunov inner product is
discrete, and operates on an LTI system of the form (2) arising from the discretization of a
PDE of the form (1) in space using some numerical scheme, e.g., the finite element method.
Projection in the Lyapunov inner product is therefore a black-box algorithm, as only the A,
B and C matrices in (2) are needed; in particular, access to the governing equations is not
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required. The symmetric positive definite matrix that defines the Lyapunov inner product
can also be computed numerically in a black-box fashion by solving a Lyapunov equation.
The existence of a solution to this Lyapunov equation is certain only if the full order system
(2) is stable; hence the Lyapunov inner product is not defined for unstable systems. In
contrast, the symmetry inner product is defined for unstable systems. In this case, a ROM
constructed in this inner product will be energy-stable, by construction. However, it will not
be time-stable, i.e., it may produce (physical) solutions that are unbounded as t → ∞.

The discussion above may lead the reader to prefer the Lyapunov inner product to the
symmetry inner product, as the former inner product can be computed in a black-box fashion
for any stable linear system, and can be used to build a ROM for this system without
accessing the PDEs. One of the biggest drawbacks of the Lyapunov inner product projection
approach involves its large computational cost. To solve numerically the Lyapunov equation
that defines this inner product, O(N3) operations are required. Moreover, since the matrix
that defines the Lyapunov inner product is typically dense (in contrast to the matrix defining
the symmetry inner product, which is sparse), at least O(N2) storage is required [19]. As a
result, creating ROMs using the Laypunov inner product may not be practical for systems
of very large size. The Lyapunov inner product may nonetheless be preferable to balanced
truncation, which requires the solution of two Lyapunov equations, and the storage of two
Gramians, in addition to Cholesky and eigenvalue factorizations of these Gramians.

For the reasons described above, for large-scale unsteady problems, the symmetry inner
product combined with the continuous projection approach is recommended by the authors,
despite its more intrusive implementation.
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